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SYNOPSIS

Objective. We determined which children should be tested for elevated blood 
lead levels (BLLs) in the face of financial and practical barriers to universal 
screening efforts and within 2009 Centers for Disease Control and Prevention 
recommendations allowing health departments to develop BLL screening 
strategies.

Methods. We used the Michigan database of BLL tests from 1998 through 
2005, which contains address, Medicaid eligibility, and race data. Linking 
addresses to U.S. Census 2000 data by block group provided neighborhood 
sociodemographic and housing characteristics. To derive an equation predict-
ing BLL, we treated BLL as a continuous variable and used Hierarchical Linear 
Modeling to estimate the prediction equation. 

Results. Census block groups explained more variance in BLL than tracts 
and much more than dichotomized zip code risk (which is current pediatric 
practice). Housing built before 1940, socioeconomic status and racial/ethnic 
characteristics of the block group, child characteristics, and empirical Bayesian 
residuals explained more than 41% of the variance in BLL during 1998–2001. 
By contrast, zip code risk and Medicaid status only explained 15% of the BLL 
variance. An equation using 1998–2001 BLL data predicted well for BLL tests 
performed in 2002–2005. While those who received BLL tests had above-
average risk, this method produced minimal bias in using the prediction 
equation for all children.

Conclusions. Our equation offers better specificity and sensitivity than using 
dichotomized zip codes and Medicaid status, thereby identifying more high-risk 
children while also offering substantial cost savings. Our prediction equation 
can be used with a simple Internet-based program that allows health-care 
providers to enter minimal information and determine whether a BLL test is 
recommended. 
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Lead has long been known to be a potent neurotoxin 
with deleterious outcomes. Starting in the 1980s, 
blood lead levels (BLLs) as low as 10 micrograms per 
deciliter (µg/dL) were found to be associated with 
adverse effects on cognitive development, growth, and 
behavior among children.1–6 Thus, the identification 
and treatment of children with elevated BLLs (EBLLs) 
is critical. Recent research has revealed evidence of 
effects on intelligence quotient (IQ) score at BLLs 
10 µg/dL, and no study has been able to identify 
a safe level.7

Our analysis of the Michigan database of BLL 
tests showed that the number of cases with a BLL 
10 µg/dL has decreased during the past decade, even 
as the number of BLL tests has increased. However, in 
2002–2005, there were still approximately 10,000 cases 
of such EBLLs that were confirmed with a venous test, 
and more than 1,000 additional EBLL cases in which 
no venous test was performed.

To minimize the effects of lead poisoning, one must 
identify those with the highest risk as soon as possible 
to begin environmental intervention and, where neces-
sary, chelation therapy. This is a procedure in which 
lead ions in the bloodstream are bonded to an organic 
molecule, thereby preventing the lead from entering 
into unwanted chemical reactions in the body of an 
affected individual. While the cost of a single BLL 
test is not high, universal testing of children would be 
very costly. Therefore, the Centers for Disease Control 
and Prevention (CDC) developed guidelines to target 
BLL testing toward children at highest risk.8 CDC 
determined that the greatest risk factor for EBLL is 
old, poorly maintained housing.9–11 Furthermore, in 
1997, CDC recommended using the following infor-
mation to identify children at high risk: housing age 
and percent of population with incomes below the 
federal poverty level (FPL) in the zip code in which 
the child lives, and self-report questions about expo-
sure to lead and peeling paint.8 In 1998, the Centers 
for Medicare and Medicaid Services mandated that all 
Medicaid-enrolled children receive a BLL test at 12 
and 24 months of age. 

However, actual testing of Medicaid children was 
far below the mandated goal. Eight states that com-
pared Medicaid data with surveillance data from 1997 
through 2001 reported that 17.9% to 52.9% of Medic-
aid enrollees younger than 72 months of age had been 
tested for BLL.12 Michigan, for its part, enacted Public 
Act 55 of 2004,13 which required Medicaid providers 
to increase testing of Medicaid children to 80%. By 
September 2008, the rate of testing those on Medicaid 
had improved so that approximately 64% of Medicaid 
children had been tested by age 2, and the rate of test-

ing has remained at this level through the year ending 
September 2009.14,15 Clearly, testing every child on 
Medicaid is still a very difficult goal to achieve. 

Meanwhile, public health officials have realized that 
better risk assessment methods are necessary. Many 
public health departments, including Michigan’s, have 
used zip codes (along with Medicaid eligibility) to 
assess risk of EBLLs and have typically dichotomized 
zip codes as high or low risk based on the proportion 
of old housing and the proportion in poverty. The 
Michigan Department of Community Health (MDCH) 
has classified half of all zip codes as “high BLL risk,”16 
and many of these zip codes have a great deal of 
socioeconomic heterogeneity. Thus, better methods 
are clearly needed. In 2009, CDC recommended 
that universal testing of children on Medicaid not be 
required and that states may target children who are 
considered high risk, based on updated state and local 
surveillance and evaluation strategies.17 

We used statistical analysis of all BLL test data in 
Michigan for 1998–2005 to optimize the prediction of 
BLL from readily available data and to compare the 
predictive validity of several lead poisoning risk assess-
ment methods. While the data that we analyzed were 
from Michigan, this approach can be implemented in 
other states and nations.

This study made several significant advances in 
targeting children at high risk. Some studies,18 rather 
than dichotomizing zip code risk, treat zip code char-
acteristics as continuous variables with which to predict 
the proportion with EBLL. However, Krieger et al.19,20 
have compared the predictive validity of various levels 
of geographic units (zip codes, census tracts, and cen-
sus block groups) and found census tracts to be most 
predictive for several health outcomes. In addition, 
Curtis et al.21 pointed out that zip codes are unreli-
able for longitudinal data because their boundaries 
are periodically changed to accommodate new zip 
codes or better align with municipal borders. Hence, 
we evaluated the utility of zip codes as a predictor and 
compared the degree to which various geographic 
levels predict BLL.

While we join others who have assessed risk based on 
census block groups instead of zip codes,10,19,20,22–24 this 
study is an improvement in several respects. Previous 
studies have treated BLL as a dichotomous variable 
(elevated or not) when it is, in fact, continuous and 
resembles a dose-response relationship in which the 
higher the BLL, the lower the child’s IQ.25 The Board 
on Population Health and Public Health Practice26 
stated that any model of prevention should recognize 
degrees of risk rather than just risk vs. no risk. In this 
study, we predicted BLL as a continuous variable. 
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Moreover, unlike previous studies, our prediction equa-
tion took into account both the sociodemographic and 
housing characteristics of the child’s neighborhood, 
and the following individual characteristics of each 
child: Medicaid status,27,28 race (African American),29 
age, and year of test. 

Public health professionals have generally assumed 
that the neighborhood housing characteristic that best 
predicts BLL is the proportion of housing built before 
1950.30 However, starting in 1940, the paint industry 
gradually reduced the sale of lead paint, and in 1955, 
the paint industry adopted a voluntary standard limit-
ing interior paints to no more than 1% lead.31 In 1978, 
the Consumer Product Safety Commission banned the 
sale of residential paint containing more than 0.06% 
lead.32,33 Hence, we investigated various possible hous-
ing ages as predictors of BLL. Most importantly, we 
investigated whether the proportion of housing built 
before 1940 is an even better predictor. We did not 
examine the predictive validity of the proportion of 
houses built in each decade before 1940, because U.S. 
Census data do not contain this information. 

Krieger et al.20 found that the percentage of the 
population below the FPL is one of the best predictors 
of geographic health disparities. However, they did not 
investigate the predictive validity of other neighbor-
hood income levels; therefore, we cannot know which 
level is most predictive of BLL. Is it the proportion 
below the FPL, the proportion below 50% of the FPL, 
or some other income level? 

We also aimed to show that knowing a child’s prior 
residential address in addition to the current one can 
further improve our model’s ability to predict BLL. 
We analyzed the predictive validity of our equation in 
two ways. First, we assessed the ability of our equation, 
based on U.S. Census data, to predict BLL several years 
after the Census. Second, we performed a statistical 
sensitivity analysis to estimate the extent to which our 
prediction equations may have been biased from BLL 
tests being given primarily to high-risk children instead 
of a general-population random sample. 

Finally, we computed sensitivity and specificity to 
measure how well our prediction equation identified 
which children have EBLLs. In the process, we showed 
that our method could result in substantial cost savings 
as compared with older methods, while still identifying 
more children with EBLL. This analysis permitted us to 
compare the costs and benefits of using our equation 
to determine which children should be tested with 
the current policy of testing all children on Medicaid, 
regardless of other risk factors. 

METHODS

Data 
MDCH maintains a database of all BLL tests that con-
tains child’s birth date, BLL test outcome, address at 
test time, Medicaid status, and racial identification. 
Each address is geocoded by MDCH with the latitude, 
longitude, and U.S. Census 2000 census block group. 
We then linked each case to Census data about the 
racial/ethnic breakdown, housing characteristics, 
income, and education of residents of the block 
group. 

Prior research has shown that BLL peaks between 
18 and 36 months of age, and slowly declines during 
the next few years.6,34 In addition, the database clearly 
shows that BLLs have decreased in recent years. These 
facts suggest that the child’s age and the year of testing 
are also important factors in predicting BLL. 

We restricted our analysis to children who had 
not reached their sixth birthday when tested. For 
1998–2001, we used data from 221,721 unique chil-
dren, of whom 72.4% were enrolled in Medicaid. The 
2002–2005 data contained 340,188 unique children, of 
whom 69.8% were Medicaid enrolled. 

Race was missing in 22.9% of cases in 1998–2001 
and 36.1% of cases in 2002–2005. Although black/white 
segregation has declined in most metropolitan areas 
and cities in the U.S., black people still generally live 
in primarily black neighborhoods in three Michigan 
cities: Detroit, Flint, and Benton Harbor.35 This fact 
enabled us to substantially reduce the loss of cases from 
missing data by assuming that the child was not black if 
the block group was less than 10.0% African American 
and assuming the child to be black if the block group 
was more than 90.0% African American. 

This assumption reduced the percentage of miss-
ing cases to only 6.6% in 1998–2001 and 9.7% in 
2002–2005. It had only a slight effect on the computed 
correlation between whether the child was black and 
the percent black in the block group (increasing it 
from 0.823 to 0.852). 

We used venous test results when they were available. 
While Michigan policy is to request a venous retest 
whenever a capillary test indicates a BLL 10 µg/dL, 
no venous follow-up was performed on 28.8% of 33,659 
such tests. In such cases, we used the capillary results 
for analysis.

Data analysis strategy
The MDCH database contains BLLs ranging from 1 to 
164 µg/dL (Table 1). Dichotomizing BLL as elevated 
or not, as many guidelines do, has serious limitations 
because the range of BLL is so large and its effects 
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resemble a dose-response relationship.6,7,25 Therefore, 
we treated BLL as a continuous variable. 

Regression analysis assumes that residuals are nor-
mal and have homogeneity of variance.36 Consistent 
with previous findings,37 BLL was normally distributed 
after logarithmic transformation. The transformation 
that minimizes both skew and heteroscedasticity of 
variances is Ln(BLL20.5), where Ln is the logarithm 
to base e ( 2.718). This logarithmic function of BLL 
was the dependent variable in all regressions. Because 
the minimum BLL recorded in the MDCH database is 
1.0, it is likely that many BLL results recorded as 1.0 
would actually be closer to 0.5 if the measurement was 
more precise. 

We grouped data into two time periods (1998–2001 
and 2002–2005) to see how well the equation developed 
from one time period predicted BLL several years later. 
Except when measuring the effect of residential mobil-
ity, the analyses only used the highest BLL result for 
each child in each four-year period. Because of data 
management issues, a small proportion (8.1%) of the 
more than 500,000 cases appear in the data for both 
four-year periods.

We balanced maximizing the proportion of vari-
ance explained with parsimony, and so did not report 
coefficients 0.10—except for coefficients of dummy 
variables—even if they were statistically significant. 

(With more than 200,000 cases per four-year period, 
very small coefficients can be highly significant.)

We used ordinary least squares (OLS) multiple 
regression for exploratory regression analysis and 
R-squared. However, the final prediction equations 
used Hierarchical Linear Modeling (HLM)38 for two 
reasons. First, when data are grouped (in this case by 
block groups), the coefficients and the standard errors 
are more accurate with HLM. Second, HLM permitted 
us to make BLL estimates for each block group that 
took into account the departures of block group sample 

data from the overall prediction equation, but avoided 
confusing random variation with systematic effects.

RESULTS

Zip codes, census tracts, and  
block groups as predictors of BLL
We first compared the proportion of variance in BLL 
explained by block group, census tract, zip code (each 
as a nominal variable), and dichotomized zip code 
risk (high vs. low). We focused on omega-squared, 
the unbiased estimate of variance explained, as this 
corrects for any increase in the explained variance 
that results from an increase in the number of values 
of the independent variable. 

Table 2 shows that census block group explains the 
greatest proportion of variance in BLL (omega-squared 
is 0.352 for 1998–2001 and 0.278 for 2002–2005) and 
dichotomized zip code risk explains the least propor-
tion of variance in BLL (omega-squared is 0.107 for 
1998–2001 and 0.076 for 2002–2005). Further, indi-
vidual zip code has an omega-squared of 0.304 for 
1998–2001 and 0.242 for 2002–2005, which is not only 
much greater than the dichotomized zip codes, but is 
slightly greater than that for census tracts (0.300 for 
1998–2001 and 0.236 for 2001–2005).

Second, we compared the variance explained 
by the old method (emphasizing dichotomized zip 
code and Medicaid status) with our prediction equa-
tion. Together, zip code and Medicaid produced an 
adjusted R-squared of 0.152 for 1998–2001 and 0.109 
for 2002–2005 (data not shown). In contrast, as shown 
in the bottom rows of Table 3, substituting block group 
characteristics for zip code substantially increases 
R-squared, and adding other individual characteristics 
does so even more.

Predicting BLL from block group,  
child’s race, and Medicaid status 
While the U.S. Census provides a large number of 
potentially relevant variables, we sought a parsimonious 
prediction equation by only including those variables 
that added a nontrivial increment to our ability to 
predict BLL. 

Socioeconomic status and BLL. For each block group, 
we computed the proportion of the population with 
income below various percentages of the FPL: 50% 
FPL, 100% FPL, 150% FPL, and 185% FPL. (Chil-
dren younger than age 2 are eligible for Medicaid if the 
family income is 185% FPL.) We found that the block 
group proportion with incomes 185% FPL had the 
highest bivariate correlation with BLL among all of the 
aforementioned income levels. Furthermore, adding 

Table 1. Distribution of BLL results in the  
Michigan Department of Community Health  
database, 1998–2005 (n=533,647)

BLL range (µg/dL) Percent of cases

      1–2 46.4
      3–4 27.7
      5–9 19.6
    10–19  5.3
    20–39  0.9
    40–164  0.1

BLL 5 blood lead level

µg/dL 5 micrograms per deciliter 
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the proportion of households at each of the three other 
income levels into the regression added 0.01% to 
R-squared. Hence, the proportion with income 185% 
FPL is the only indicator of neighborhood income that 
we use. The proportion of individuals who have not 
graduated from high school has a larger association 
with BLL than any other education level.39

Table 3 presents the unstandardized regression coef-
ficients from an HLM in which we predict Ln(BLL20.5) 
from all of the variables. The second column of Table 3 
contains coefficients for the period 1998–2001, and the 
third column contains the coefficients for 2002–2005. 
Each coefficient represents the predicted change in the 
Ln(BLL20.5) if a predictor had the value 1 rather than 
0. Thus, a coefficient of 0.20 indicates that the BLL of 
a child with a value of 1 on that variable is predicted 
to be 22.14% higher, controlling for other variables in 
the model (e 0.2051.2214), than the BLL of a child with 
a value of 0 on that same variable. 

Age of housing and rental status. Although the CDC 
BLL risk assessment questionnaire8 assumes that risk 
from house paint did not decrease until after 1950, we 
analyzed the effect of the proportion of housing built 
in various decades, starting with all pre-1940 housing. 
Table 3 shows that the coefficients for the effect of pro-
portion of housing built prior to 1940 on Ln(BLL20.5) 
(0.808 for 1998–2001 and 0.694 for 2002–2005) are 
much larger than the corresponding coefficients for 
housing built in the next decade, 1940–1949 (0.277 for 
1998–2001 and 0.119 for 2002–2005). Surprisingly, the 
proportion of housing built between 1950 and 1980 
had no perceptible effect on BLL, even though lead 
paint was not entirely banned until 1978.

Some have suspected that rental housing is more 

Table 2. Proportion of variance in Ln(BLL–0.5) from the Michigan Department of Community Health database, 
explained by dichotomized zip code risk, zip code, census tract, and block group by four-year perioda 

Number of different  
values of predictor

Eta-squared  
(biased estimate of proportion  

of variance explained)

Omega-squared  
(unbiased estimate of proportion  

of variance explained)

Predictor 1998–2001 2002–2005 1998–2001 2002–2005 1998–2001 2002–2005

Zip code risk  
  dichotomized 2 2 0.107 0.076 0.107 0.076
Zip code 894 903 0.307 0.244 0.304 0.242
Census tract 1,973 1,973 0.306 0.241 0.300 0.236
Census block group 8,248 8,309 0.375 0.296 0.352 0.278

aFor the years 1998–2001, all analyses are based on approximately 220,000 cases. For the years 2002–2005, all analyses are based on 
approximately 340,000 cases. In each analysis, the geographic unit was the sole predictor.

Ln 5 logarithm

BLL 5 blood lead level

poorly maintained and, therefore, is especially condu-
cive to high BLLs. However, in both four-year periods, 
the proportion of housing that is rental had a coeffi-
cient of only 0.05, and even adding its interactions with 
other variables adds less than 0.1% to R-squared.

Race/ethnicity. The MDCH database identifies six dif-
ferent racial groups. However, if we created dummy 
variables for groups other than African American, we 
would add 0.01% to R-squared. As such, we combined 
all non-black people and used this as the reference 
category. Table 3 shows that when controlling for 
Medicaid status and neighborhood characteristics, a 
black child had a Ln(BLL20.5) that was 0.270 greater 
than other children in 1998–2001 and 0.206 greater 
in 2002–2005. 

Because all predictors have a minimum of 0 and a 
maximum of 1 (100%), we were able to compare the 
size of the unstandardized coefficients to determine 
which variables had the greatest effect. However, note 
that the value of a multiple regression coefficient can 
be substantially reduced by the presence of other pre-
dictors with which it is highly correlated.36 

The coefficients for the effect of percent African 
American in the block group on Ln(BLL20.5) (0.414 
in 1998–2001 and 0.400 in 2002–2005) were much 
smaller than the coefficients for corresponding coef-
ficients for percent Latino (0.641 in 1998–2001 and 
0.556 for 2002–2005), because the percent African 
American was accompanied in the equation by the 
variable indicating whether the child was black (the 
correlation between percent African American in 
the neighborhood and whether the child was black 
exceeded 0.8). By contrast, the variable indicating 
whether the child was Latino was not in the regression 
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because this information was not available for most 
of the cases. Therefore, the coefficients for percent 
Latino were larger than for percent African American 
because they were not reduced by a similar redundancy 
in the equation. 

Child’s age. We used child’s age as a predictor via a 
set of dummy variables, with those younger than one 
year of age as the reference category. The results were 

consistent with prior findings,6,10,29 which indicated that 
2-year-olds have substantially higher BLLs than other 
groups. The dummies for year tested indicated that 
when controlling for other variables, the predicted 
BLLs decreased each year. 

Interaction effects. We examined a large number of 
interaction terms: products of percent old housing, 
multiplied by black race, Medicaid status, and the 

Table 3. Predicting Ln(BLL–0.5) in the Michigan Department of Community Health database,  
from race, Medicaid status, age, and block group census variables in the years 1998–2001  
and 2002–2005 using Hierarchical Linear Modeling

Predictor
Coefficients for  

1998–2001a (SE)b
Coefficients for  

2002–2005c (SE)b

Intercept 20.401 (0.009) 20.488 (0.009)

Individual child characteristics
  Blackd 0.270 (0.007) 0.206 (0.006)
  Medicaidd 0.220 (0.004) 0.172 (0.006)
  Age (in years)e

    1 0.242 (0.007) 0.224 (0.007)
    2 0.426 (0.007) 0.390 (0.007)
    3 0.295 (0.007) 0.265 (0.007)
    4 0.180 (0.007) 0.138 (0.007)
    5 0.147 (0.008) 0.058 (0.008)
  Four-year periodf

    First year of four-year period 0.289 (0.005) 0.220 (0.004)
    Second year of four-year period 0.171 (0.005) 0.075 (0.004)
    Third year of four-year period 0.055 (0.005) 0.017 (0.004)

Block group census variables
  Proportion not graduating high school 0.468 (0.044) 0.556 (0.040)
  Proportion pre-1940 housing 0.808 (0.019) 0.694 (0.050)
  Proportion 1940–1950 housing 0.277 (0.034) 0.119 (0.021)
  Proportion 185% of federal poverty level 0.377 (0.030) 0.212 (0.028)
  Proportion black 0.414 (0.016) 0.400 (0.014)
  Proportion Latino 0.641 (0.054) 0.556 (0.050)

Interactions 
  Medicaid (proportion pre-1940 housing) Trivial—not included 0.109 (0.018)
  Medicaid (proportion 1940–1949 housing) Trivial—not included 0.171 (0.028)

Adjusted R-squared after prediction equation using: 
  Above block group variables 0.285 0.215
  Above individual-level variables 0.229 0.168
  Above individual-level variables plus block group variables plus interactions 0.341 0.256
  Also adding Empirical Bayesian Residuals to above variables 0.410 0.324
  Conditional standard deviation for equation with  
    Empirical Bayesian Residuals 0.768 0.798

aFor 1998–2001, n5206,991; year 1 5 1998.
bAll coefficients are p0.001.
cFor 2002–2005, n5307,204; year 1 5 2002. 
dBlack and Medicaid are each coded 0 if that characteristic is absent and 1 if it is present. 
eThe reference group for dummy variables was age 5 0 (i.e., 1 year of age). 
fThe reference group for dummy variables for year tested was the last year of each four-year period.

Ln 5 logarithm

BLL 5 blood lead level

SE 5 standard error
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age dummies, but found that only Medicaid status 
multiplied by proportions of pre-1940 housing and 
1940–1949 housing had sufficient effects on our 
dependent variable to include in Table 3, and only in 
the second four-year period of 2002–2005 (0.109 for 
pre-1940 housing and 0.171 for 1940–1949 housing). 

BLL results: 2002–2005 vs. 1998–2001 
Table 3 permits us to see how patterns of BLL risk have 
changed and whether a prediction equation developed 
for one set of years is useful for future prediction. The 
intercept was more negative for 2002–2005 (20.488) 
than for 1998–2001 (20.401), indicating that a child 
with the same characteristics would be predicted to 
have a lower BLL in 2005 than in 2001. This is because 
the central tendency of BLL has decreased over time. 
The slope coefficients for 2002–2005 were smaller for 
all variables except the proportion not graduating from 
high school (0.468, 0.556) and the interaction terms. 
R-squared was also lower in the latter years. 

However, the corresponding slope coefficients for 
the two time periods had almost exactly the same order. 
Moreover, by applying the Table 3 coefficients derived 
from the 2002–2005 data to the 1998–2001 data, the 
predicted values of Ln(BLL20.5) from the coefficients 
for the latter years had an extremely high correlation 
(0.997) with the predicted values from the former years’ 
equation. The 1998–2001 equation would, however, 
provide overestimates if applied to the 2002–2005 data, 
because the mean Ln(BLL20.5) decreased. 

When block group sample means  
differ from predicted means 
The slope coefficients in Table 3, combined with 
the individual’s score on each predictor, provided 
predicted values of our dependent variable for each 
child. The mean block group values of the dependent 
variable typically deviated from those predicted by the 
independent variables. We next considered whether 
such a deviation indicated that the block group’s mean 
Ln(BLL20.5) truly differed from the predicted value 
or was the result of sampling error.

HLM computed the best estimate for the popula-
tion mean of our dependent variable for each block 
group by taking into account both the overall regres-
sion equation and the block group sample data. This 
Empirical Bayesian estimate of the intercept for each 
block group—not to be confused with the probability 
from typical Bayesian inference—weighted the block 
group sample mean more heavily when the sample 
size was larger in the block group. These estimates 
were combined with the characteristics of each child 
to produce the final predicted Ln(BLL20.5) for the 

child. In the 1998–2001 data, these predicted values 
ranged from 20.72 to 2.66, corresponding to BLLs 
of 1.0 µg/dL to 14.8 µg/dL. In the 2002–2005 data, 
these predicted values ranged from 20.76 to 2.30, cor-
responding to BLLs of 1.0 µg/dL to 10.5 µg/dL. 

The bottom row of Table 3 shows that for both 
time periods, substituting the Empirical Bayesian 
estimates for the predicted (fitted) values from the 
regression substantially increased the percent of vari-
ance explained. 

Possible effects of a biased sample
BLL tests are disproportionately given to those con-
sidered to have above-average risk.40 Does the non-
randomness of our sample substantially threaten 
our goal of a prediction equation that provides 
unbiased estimates of expected BLL of all children 
in Michigan? 

We distinguished the effects of two kinds of selection 
bias. With exogenous selection, the sample is not repre-
sentative of the population, but the probability of being 
selected is entirely determined by the predictors in the 
model; in this case, the coefficients of an OLS regres-
sion remain unbiased and consistent.41 Much of the 
selection bias in our data fits this criterion. Those who 
are black, Medicaid enrolled, and live in low-income 
neighborhoods with old housing are more likely to be 
tested, but these variables are in our model.

However, the probability of selection may also be 
correlated with the error of prediction.41 We performed 
a statistical sensitivity analysis to examine how much 
this would bias the prediction equation. We created a 
duplicate dataset for the 1998–2001 data and pretended 
that these new cases had never been tested. Thus, the 
correlations among all predictors were the same for 
both the tested and “untested” cases. We next assigned 
a BLL to each of these untested cases such that the 
assigned BLLs had a mean of 21% less than the test 
cases; however, this ratio had some random variation. 
The assigned scores had a 0.948 correlation with the 
matched tested cases.

In the regression equation based on the combined 
(tested plus untested) data, the intercept was 0.122 
lower than the intercept from only the tested, while 
the slope coefficients were typically within 0.02 of each 
other. The predicted values of our dependent variable 
ranged between 0.116 and 0.125 less in the regression 
equation using all cases than in the equation using 
only those tested. Thus, this sampling bias produced 
a slight overestimate (12%) of a child’s expected BLL. 
However, the correlation between the two sets of pre-
dicted values exceeded 0.9999, and we concluded that 
the predicted BLL estimated by our equation was quite 
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robust with respect to plausible differences between 
our sample and the total population.

Residential mobility and BLL
We used the 2002–2005 data to explore the effects of 
changing residences. Of the approximately 340,000 
children tested in those years, about 76,000 had two 
or more test results. Of these children, 46.2% moved 
before their second test and a large majority (88.3%) 
of those who moved relocated to a different block 
group. When predicting the result of the second BLL 
test, adding the predicted BLL risk from the block 
group for the first BLL test increased R-squared by 
0.9% above that explained by the characteristics of 
the second block group alone. Thus, the prior address 
made only a small contribution to predicting BLL. 
However, if such information is readily available, it is 
worth using.

Among low-income people, frequent changes of 
residence may be indicators of financial and family 
crises that indicate greater poverty and/or fewer coping 
skills than among more residentially stable people in 
the same neighborhood.42–44 Further analysis showed 
that moving increased BLL, but only to the extent that 
each block group had houses that were built prior to 
1950. 

Estimating cost-effectiveness
We compared the cost-effectiveness of using our equa-
tion to determine which children need testing with that 
of existing risk assessments based on zip code and Med-
icaid status. To estimate the cost of a BLL test, we noted 
that while children covered by Medicaid are eligible for 
free testing, Medicaid reimburses health-care providers 
$3.06 for venipuncture and $8.00 for a capillary blood 
draw. In addition, the MDCH laboratory charges $16.91 
to analyze the test. Private providers, laboratories, and 
Women, Infants, and Children clinics charge between 
$15.00 and $50.00 for the entire procedure. Taking all 
of this into account, we regarded $30.00 as a reasonable 
estimate of the full cost for each BLL test.

While research suggests that no amount of lead in 
the blood is completely safe, public health agencies 
use certain cutoff points to distinguish cases of greater 
concern (e.g., EBLL) from those of lesser concern 
(i.e., nonelevated BLL). MDCH uses two such cutoff 
points: 10 µg/dL and a newer, more conservative one 
of 5 µg/dL.14

To evaluate the potential cost of various meth-
ods and their effectiveness in identifying those with 
EBLL, we computed both sensitivity (the proportion 
of true positives that are correctly identified as such) 
and specificity (the proportion of true negatives that 

are correctly identified as such) under several test-
ing criteria. However, doing so required that we not 
only dichotomize BLL into elevated vs. nonelevated, 
but also dichotomize our risk criterion to distinguish 
those who needed testing from those who did not. 
One possible testing criterion is to test those, and 
only those, who either live in a high-risk zip code or 
are on Medicaid. 

Alternative criteria were based on using our predic-
tion equation. To do so, we first computed a BLL risk 
score for each child, based on the regression coef-
ficients in Table 3, and added an Empirical Bayesian 
Residual, which varied by block group. This risk score 
was the predicted value of Ln(BLL20.5) for the child. 
However, as with any regression, the actual scores of 
Ln(BLL20.5) varied around the predicted score.

Next, we set criterion values for our risk score, such 
that we recommended testing those and only those 
whose risk score exceeded the criterion. Our values 
of sensitivity and specificity depended on the chosen 
criterion. The Medicaid regulations and 1997 CDC 
guidelines,8 which require that all children on Medic-
aid or in high-risk areas must receive a BLL screening 
test at 12 and 24 months of age, clearly assume that 
high sensitivity is more important than high specificity. 
Hence, all the criteria that we examined provided a 
very high sensitivity.

Table 4 contains the sensitivity and specificity results 
from the 2002–2005 data for several different testing 
criteria and two cutoff points for EBLL. In row A, we 
show the CDC/MDCH criterion of testing all who 
live in a high-risk zip code or are on Medicaid. Row 
B assesses testing of all who have a risk score 0 (i.e., 
all with predicted values of BLL1.5 µg/dL). Row C 
assumes that we tested all those who either had a risk 
score 0 or were on Medicaid. 

To understand the tradeoffs involved, the two right-
hand columns show, for each criterion, how many tests 
of true negatives would be avoided and how many true 
positives would be missed. Comparing rows A and B, 
which use the EBLL cutoff point of 10 µg/dL, reveals 
that if we tested all with a risk score 0, we could 
achieve both higher sensitivity (0.993 vs. 0.990) and 
higher specificity (0.154 vs. 0.136) than if we used the 
1997 CDC criterion of Medicaid and/or zip code. Our 
procedure would miss 36 (115 minus 79) fewer cases 
of EBLL, while avoiding 5,096 negative tests (45,431 
minus 40,335) and, at $30.00 per test, would have saved 
approximately $152,880.

Using our prediction equation, which took Medicaid 
status into account and required that those with risk 
scores 0 be tested (as in row B of Table 4), would 
have resulted in testing 95.1% of those on Medicaid. 
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But suppose we would have tested all with a risk score 
0 but also tested all children on Medicaid, regard-
less of risk score. Comparing row C with row B shows 
that doing so would have slightly increased sensitivity 
from 0.993 to 0.995, but would have lowered specificity 
from 0.154 to 0.118. Our procedure would have failed 
to identify an additional 20 EBLL cases (79 minus 59) 
who would have been tested had we also tested all 
Medicaid children, while avoiding 10,449 more BLL 
tests (45,431 minus 34,982), thereby saving $313,470 
in testing costs. Under the 2009 CDC guidelines, pub-
lic health departments may decide if the extra cost is 
worth the benefits.17

Rows D and E of Table 4 show a similar pattern for 
the lower EBLL cutoff point of 5 µg/dL, as found in 
rows A and B. Comparing rows D and E, we see that 
testing all who have a risk score 0 again gave greater 
sensitivity (0.981 vs. 0.975) and greater specificity (0.179 
vs. 0.157) than dichotomized zip code risk or Medicaid. 
If, however, we wanted as high a sensitivity as achieved 
in row B at this lower EBLL cutoff point, we would 
need to test at an even lower risk score: those with a 
risk score of at least 20.1 (equivalent to a predicted 
BLL of 1.404, see row F).

By comparing rows F and G, we assessed the cost 
and benefits of adding the requirement to test all on 
Medicaid, but at the lower cutoff point of 5 µg/dL. 
Our procedure would have missed 89 cases (525 minus 

Table 4. Sensitivity and specificity of BLL risk scoresa from prediction equation vs. Medicaid or high-risk  
zip codes, using 2002–2005 Michigan Department of Community Health data and two cutoff points for EBLL 

Testing criterion Sensitivity Specificity

Number of non-EBLL tests 
that could be avoided 5 
(specificity) 3 (number  
of nonelevated tests)

Number of EBLL cases that 
would be missed 5  
(1 – sensitivity) 3  

(number of elevated tests)

Cutoff point 5 10 µg/dL for EBLLb

(A)	 High-risk zip codes or Medicaid 0.990 0.136 40,335 115
(B)	 Risk score 0 0.993 0.154 45,431 79
(C)	 Risk score 0 or Medicaid 0.995 0.118 34,982 59

Cutoff point 5 5 µg/dL for EBLLc

(D)	 High-risk zip codes or Medicaid 0.975 0.157 38,954 1,496
(E)	 Risk score 0 0.981 0.179 44,397 1,113
(F)	 Risk score 20.1 0.991 0.107 26,542 525
(G)	 Risk score 5 20.1 or Medicaid 0.993 0.091 22,482 436

aThe BLL risk score is the predicted value of Ln(BLL20.5) from the regression coefficients predicting Ln(BLL20.5) from race, Medicaid status, age, 
and block group census variables. All computations use the 307,204 cases that have no missing data on any of the variables. 
bWhen EBLL is considered to be 10 µg/dL, the number of EBLL test results is 11,391. 
cWhen EBLL is considered to be 5 µg/dL, the number of EBLL results is 59,611.

BLL 5 blood lead level

EBLL 5 elevated blood lead level

µg/dL 5 micrograms per deciliter

436) compared with testing all on Medicaid, but would 
have required 4,060 (26,542 minus 22,482) fewer tests, 
at a savings of more than $120,000.

While our prediction method would have left a few 
EBLL cases untested, these accounted for less than 
1% of all cases tested by the MDCH in our database. 
At the current cutoff point of 10 µg/dL, we would 
have missed 0.69% (79/11,391); at a cutoff point of 
5 µg/dL, we would have missed 0.88% (525/59,611). 
Furthermore these “missed” cases were overwhelmingly 
cases that were just barely above the cutoff point for 
EBLL. As can be seen in Table 5, only about one-third 
of the missed cases had BLLs that were at least 50% 
above the cutoff point for EBLL, and only about 10% 
of them had BLLs that were at least twice as high as 
the cutoff point. 

DISCUSSION

Using census block groups explains much more of the 
variance in BLL than does dichotomizing zip codes 
into high and low risk. Contrary to other findings,19,20 
block groups better predict BLL than do census tracts, 
and our study confirms the conjecture that one’s BLL 
is more closely associated with characteristics of one’s 
immediate environment than with characteristics of a 
larger area, such as a tract or zip code.45

The age of housing and the socioeconomic status 
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of the block group can explain most of the variance in 
BLLs. However, the race of the child and racial/ethnic 
character of the neighborhood have nontrivial effects, 
even after controlling for the other variables. 

The risk of lead poisoning does not decrease until a 
family’s income is 185% FPL. Furthermore, housing 
built before 1940 poses far greater risk than housing 
built between 1940 and 1949.23 By contrast, the pro-
portion of rental housing in a block group has only 
trivial effects.

Our model’s predictions were improved by including 
Empirical Bayesian Residuals as predictors. The equa-
tions for 1998–2001 and 2002–2005 made very similar 
predictions, except that predicted BLL was lower in 
more recent years. Even if those who are tested have 
higher BLLs than others, our prediction equation can 
still be usefully applied to all children in the state, even 
five years after the 2000 Census. 

Our prediction equation provides a noticeable 
improvement in predicting BLL compared with zip 
code risk and Medicaid status. As we have shown, our 
equation provides a cost savings and identifies more 
cases of EBLL. Knowing the child’s previous residence 
can add to the accuracy of risk prediction. 

Our sensitivity and specificity analysis required 
dichotomizing both actual BLL results and risk scores. 
However, our prediction equations and risk scores 
are undoubtedly more accurate than those in previ-

Table 5. Distribution of BLLs in the  
Michigan Department of Community Health  
database of BLL tests, 2002–2005, for those  
elevated cases that would be missed, using  
BLL risk scoresa and cutoff points 

BLL 

Percent of EBLL cases that 
prediction method would 

have missed

With 10 µg/dL cutoff point for EBLL  
and testing all with risk score 0.0

BLL 15 µg/dL 34.2
BLL 20 µg/dL 11.4

With 5 µg/dL cutoff point for EBLL  
and testing all with risk score 20.1

BLL 7 µg/dL 31.1
BLL 10 µg/dL 7.6
BLL 20 µg/dL 1.0

aThe risk score is the predicted value of Ln(BLL20.5) from the 
regression coefficients predicting Ln(BLL20.5) from race, Medicaid 
status, age, and block group census variables.

BLL 5 blood lead level

EBLL 5 elevated blood lead level

µg/dL 5 micrograms per deciliter

ous research studies10,18–20,22 because our equations 
were developed from treating both observed and 
predicted BLLs as continuous variables, rather than 
as dichotomies.

Limitations
Our study had several limitations. These data came 
from only one state and during an eight-year period. 
In addition, some of the elevated capillary tests were 
not followed up with a more accurate venous test, but 
data from these capillary tests were analyzed along 
with the venous tests. 

CONCLUSIONs

While the Centers for Medicare and Medicaid Services 
mandates that all Medicaid children be tested,14,46 many 
states, including Michigan, do not meet this mandate. 
This article provides an empirical way for public health 
officials to answer the question of whether requiring 
testing of all children on Medicaid (rather than relying 
strictly on our prediction equation) is the best way to 
balance cost savings and public health concerns. 

While Medicaid eligibility and dichotomized zip 
code risk have a much lower predictive validity than our 
equation, they present a very simple decision procedure 
to the staff at a public health clinic or medical office. 
By contrast, using our prediction equation seems, at 
first glance, quite daunting. 

However, with the aid of Internet-based software, our 
prediction equation is able to efficiently identify neigh-
borhoods and individuals with high risk of EBLLs. Our 
website (http://midata.msu.edu/bll) is very useful for 
determining if a child should be tested. In addition to 
the address, the program requests the Medicaid status, 
race, and age of the child. From the address, the census 
block group is determined and its characteristics are 
entered into the prediction equation. The program 
then indicates whether a BLL test is recommended, 
and this depends on whether the child’s predicted 
value of Ln(BLL20.5) exceeds the cutoff point chosen 
by MDCH. MDCH has authorized its use as one way to 
determine whether a BLL test is needed. 

Similar prediction equations can be developed for 
other states from BLL test data, U.S. Census informa-
tion, and address. This will improve decisions as to 
which children should be targeted for testing. In doing 
so, it will reduce costs while simultaneously identifying 
more cases of EBLL.
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