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SYNOPSIS

Objectives. This article describes and compares the performance characteris-
tics of two approaches to outbreak detection in the context of a coroner-based 
mortality surveillance system using controlled feature set simulation.

Methods. The comparative capabilities of the outbreak detection methods—
the Epidemic Threshold and Cusum methods—were assessed by introducing a 
series of simulated signals, configured as nonoverlapping, three-day outbreaks, 
into historic surveillance data and assessing their respective performances. 
Treating each calendar day as a separate observation, sensitivity, predictive 
value positive, and predictive value negative were calculated for both signal 
detection methods at various outbreak magnitudes. Their relative performances 
were also assessed in terms of the overall percentage of outbreaks detected.

Results. Both methods exhibited low sensitivity for small outbreaks and low 
to moderate sensitivity for larger ones. In terms of overall outbreak detection, 
large outbreaks were detected with moderate to high levels of reliability, while 
smaller ones were detected with low to moderate reliability for both methods. 
The Epidemic Threshold method performed significantly better than the Cusum 
method for overall outbreak detection.

Conclusions. The use of coroner data for mortality surveillance has both advan-
tages and disadvantages, the chief advantage being the rapid availability of 
coroner data compared to vital statistics data, making near real-time mortality 
surveillance possible. Given the lack of sensitivity and limited outbreak detec-
tion reliability of the methods studied, the use of mortality surveillance for early 
outbreak detection appears to have limited usefulness. If it is used, it should 
be as an adjuvant in conjunction with other surveillance systems.
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Mortality surveillance based on the analysis of official 
death records has long been one of the basic methods 
used in epidemiology for planning and evaluating the 
delivery of health services, setting health policy and 
priorities, and generating new causal hypotheses.1 
More recently, the threat of bioterrorism and other 
emerging threats to public health have focused atten-
tion on the use of public health surveillance systems, 
including mortality surveillance systems, for the early 
detection of outbreaks.2 While such activities may often 
take place at the state and national level, the use of 
local mortality statistics also plays an important role in 
monitoring and improving community health.3

Timely dissemination of results to those who are in a 
position to take action or who need to know is generally 
considered an important element of any surveillance 
system.4 With increasing emphasis being placed on 
the importance of surveillance for the early detection 
of disease outbreaks, including potential instances of 
bioterrorism, the standard of what is considered timely 
is shifting. The need for rapid intervention in response 
to outbreaks requires that surveillance systems, includ-
ing mortality surveillance, operate within a framework 
approaching real time. Therefore, reliance upon state 
vital records for community mortality surveillance is 
problematic, as the complete availability of official 
records may lag by months or even years. This time 
lag requires an alternative data source to vital records 
for timely community mortality surveillance.

The use of data from medicolegal death investiga-
tions—those carried out by coroners and/or medical 
examiners—has been suggested for mortality surveil-
lance, particularly for sudden or unexpected deaths.5,6 
Because they investigate deaths among people who 
have not accessed the health-care system and who may 
have died without a confirmed diagnosis, the Centers 
for Disease Control and Prevention (CDC) has recom-
mended that coroners and medical examiners “should 
be a key component of population-based surveillance 
for biologic terrorism.”6(p.17) The CDC has further 
recommended that electronic information systems for 
sharing data between medicolegal death investigators 
and public health authorities be designed for the rapid 
recognition of excess mortality.6

Kentucky law (KRS Chapter 72) provides for a joint 
coroner/medical examiner system in which elected 
coroners in each county and their deputies investi-
gate unattended, unexplained, violent, and suspicious 
deaths to establish the cause and manner of death. 
When requested, the Office of the State Medical Exam-
iner assists county coroners—who are not required 
to have medical training—in their investigations by 
providing postmortem forensic medical examinations, 
including autopsies and toxicological tests. State medi-

cal examiners do not have independent jurisdiction 
to investigate deaths and are only involved in cases 
referred to them by a county coroner. Because, in many 
cases, the cause and manner of death can be reason-
ably inferred from evidence gathered at the scene or 
from the decedent’s known medical history, not all 
coroners’ cases are referred to the medical examiner. 
For this reason, and because most data from coroners’ 
investigations are available much sooner than those 
from medical examiners, coroner data are more suit-
able for a system of near real-time, population-based 
mortality surveillance in Kentucky. 

The Louisville Metro Health Department (LMHD), 
Jefferson County Coroner’s Office, and the University 
of Louisville School of Public Health and Information 
Sciences have collaborated to develop and deploy such 
a system in the Louisville/Jefferson County Metro with 
funding from the school’s Center for the Deterrence 
of Biowarfare and Bioterrorism.

The widespread use of public health surveillance 
systems for early outbreak detection and response is 
a recent development, having been stimulated by the 
anthrax attacks of 2001 and an increased awareness 
of the threat of bioterrorism. The usefulness of such 
systems for this purpose has not been definitively estab-
lished; measurement of the performance characteristics 
of early detection surveillance systems is required to 
determine the relative value of systems using differing 
approaches and designs.2

However, in the absence of historic data containing 
known examples of the type of event a surveillance 
system is designed to detect, evaluation of the system’s 
performance is only possible using simulation. This 
type of simulation can be based on datasets that are 
authentic, synthetic, or semisynthetic. One way to cre-
ate such a semisynthetic dataset is to spike authentic 
(historic) background data with a simulated signal. The 
use of controlled feature sets allows for the systematic 
definition of simulated signals based on four variable 
parameters: outbreak magnitude, duration, spacing, 
and temporal progression.7

This article describes and compares the perfor-
mance characteristics of two approaches to early event 
detection in the context of LMHD’s coroner-based 
mortality surveillance system using controlled feature 
set simulation. 

METHODS

The comparative capabilities of the two outbreak detec-
tion methods were assessed by introducing a series of 
simulated signals, configured as temporal clusters, into 
historic surveillance data from 2004 and assessing their 
respective performances.
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Surveillance system description
In this system, deputy coroners input data from death 
investigations in the field using laptop computers, and 
these data are uploaded to a master database upon com-
pletion of the investigation. Every 24 hours, an updated 
copy of the database is uploaded to a LAN folder that 
is shared with LMHD. The data is downloaded by 
LMHD each morning for daily analysis. Two different 
methods are used in the analysis of daily case counts to 
detect significant departures from baseline mortality: 
the Epidemic Threshold and Cusum methods.

When the system signals a significant increase in 
mortality, further epidemiologic analyses are per-
formed using data already available from the coroner’s 
database, including analyses of the presumed cause 
and manner of death and geographic as well as age, 
gender, and race stratified analyses. Such analyses are 
intended to determine whether further data collec-
tion and investigation are warranted. In some cases, 
these intermediate analyses may rule out the need 
for further follow-up; for example, identifying excess 
deaths as the result of a multiple-vehicle traffic crash. 
In cases in which further follow-up is required, they 
will define or narrow the focus of the epidemiologic 
field investigations to be undertaken.

Data
Daily counts of coroner cases were electronically avail-
able from the beginning of 2001. Data from 2001 
through 2003 were used to model an expected baseline 
and simulations were performed using data from 2004, 
which was spiked with the simulated outbreaks. To 
account for seasonality and secular trend in the data, 
the baseline was constructed using a cyclical regression 
approach similar to that proposed by Serfling.8

The Serfling method normally aggregates deaths at 
the weekly level. In this case, however, the model was 
based upon daily aggregation of event data, requiring 
slight modification of the regression equation. The 
applied model took the following form: Yt 5 a 1 b 
3 t 1 c 3 sin (2 3 π 3 t/365) 1 d 3 cos (2 3 π 3 
t/365) where Yt is the predicted number of coroner’s 
cases for day t ; t is the index for day of death; a is 
the mean number of daily cases for the period 2001 
through 2003; b 3 t is a linear secular trend component; 
and c and d are harmonic coefficients used in the sine 
wave component to model seasonality. The confidence 
limits for the predicted values were computed as 61.96 
standard error (SE) of the model. The results of the 
model, along with the observed data from 2004, are 
shown in Figure 1. 

The Serfling method also calls for the removal of 
epidemic periods from the data upon which the model 

is based. However, because nothing in the data that 
could be considered a period of epidemic mortality 
was associated with any particular, identifiable event or 
process, data from the entire period were used.

Controlled feature sets
Semisynthetic datasets consisting of authentic back-
ground noise and controlled feature set-simulated 
outbreaks were created by injecting a series of identi-
cal, three-day-long outbreaks spaced three days apart 
into the 2004 surveillance data. A three-day lag was 
maintained between the end of each outbreak and 
the onset of the subsequent one, thus the first of these 
outbreaks began on January 1, the second on Janu-
ary 7, and so on. In this way, there were 183 outbreak 
days comprising 61 distinct outbreaks over the course 
of the 366 days of data (2004 was a leap year). These 
outbreaks were then removed and another, identical 
series was introduced but shifted forward by one day 
(i.e., the first outbreak began on January 2). This pro-
cedure was repeated two more times, introducing the 
controlled feature set on January 3 and 4, respectively. 
As a result, the entire dataset yielded 244 distinct, 
 nonoverlapping outbreaks for analysis, each occurring 
in a unique temporal context.

The previously mentioned simulation was carried 
out nine times, using outbreaks of increasing mag-
nitudes. Outbreak size was increased using multiples 
of the standard deviation of the error profile of the 
model. The error profile of the model is defined as 
the distribution of the daily forecast errors, which are 
defined as the expected minus the observed number of 
events for each day.7 The error profile can be thought 
of as the amount of background noise from which 
an outbreak must be distinguished in order to signal 
an alert. When the signal-to-noise ratio is near one, 
outbreak detection will typically be poor. As this ratio 
increases (i.e., with increasing outbreak magnitude), 
detection performance should improve.7 

The smallest outbreak magnitude tested was two 
times the standard deviation of the error profile. 
Assuming that forecast error is random, the error pro-
file should be normally distributed, and positive two 
standard deviations would correspond approximately 
with the upper 2.5% of the forecast error values. The 
outbreak size was increased by one standard deviation 
(rounded to the nearest whole number) up to a maxi-
mum of 10 times the standard deviation of the error 
profile. In all cases, the temporal progression of the 
outbreaks was configured as linear, with the number of 
additional cases increasing by the same amount each 
day of the outbreak.
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Signal detection

Epidemic threshold. The Epidemic Threshold method 
was originally designed by Serfling8 and is currently 
used by the CDC, with some modifications, for 
pneumonia and influenza mortality surveillance.9 
This method has also been applied to nontraditional 
mortality surveillance in Madrid, Spain, using weekly 
counts from the city’s undertaker database.10 The 
epidemic threshold was established based upon the 
upper 95% confidence limit of the modeled baseline. 
Daily excursions above the epidemic threshold are 
counted as alerts. An example of the application of 
the Epidemic Threshold method to surveillance data 
is illustrated in Table 1.

Cusum. The Cusum method is a modification of a 
technique that was originally developed for quality-
control monitoring of industrial processes that relies 
on the monitoring of cumulative differences between 

observed and expected data in a time window when 
compared to a threshold.11 The method was applied to 
public health surveillance beginning in the 1960s12,13 
and, more recently, has been used in bioterrorism 
surveillance applications.14–16

In this method, for each time interval, a prede-
termined reference value, k, based on the expected 
number of cases, is subtracted from a second value, 
Y, derived from the observed number. The resulting 
sum, Y 2 k, is then added to the sum for the previous 
period, and so on. If the cumulative sum of these val-
ues, the cusum, exceeds a warning value, H, based on 
the expected number of cases, a significant departure 
from baseline is indicated. Because it is only necessary 
to detect significant increases in disease frequency, 
not decreases, the cusum is not allowed to fall below 
zero. If a negative value is obtained, the cusum is set 
to zero.

In this case, an adaptation of the Cusum method 

Figure 1. Expected and observed daily numbers of coroner cases: Jefferson County, KY, 2004
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described by Aldrich and Drane17 was used. This meth-
odology was adopted because the expected daily count 
of coroner’s cases was larger than the design of the 
traditional Cusum method intended. In this adaptation, 
rather than using raw event counts, a transformed, z-
like value—Y—is used. It is derived as:

Y 5 X 2 µ 
   µ

X is the observed and µ the expected number of daily 
events. The value for k is set at one and the alert 
threshold for the cusum value, H, is set at two. Excur-
sions by the cusum value above the alert threshold 
were counted as outbreak alerts. The expected daily 
number of coroner’s cases was derived from the Ser-
fling baseline. 

Because the cusum value is dependent upon preced-
ing time periods, it was necessary to temporally isolate 
each outbreak to ensure that any response from the 
previous outbreak was eliminated from the system 
before a new one was introduced. This isolation was 
accomplished by removing the simulated data for each 
outbreak before recording the response for the next. 
An example of the application of the Cusum method 
to surveillance data is illustrated in Table 2. 

ANALYSIS

Sensitivity, predictive value positive (PVP), and pre-
dictive value negative (PVN) were calculated for both 

signal detection methods for each outbreak magnitude. 
These calculations were based on the detection of 
specific outbreak days, with each day considered as a 
separate, independent case.

For both signal detection methods, a true positive 
result was recorded when the system signaled an alert 
on an outbreak day, and a true negative result was 
recorded if no alert was signaled on a nonoutbreak day. 
A false positive result was recorded when the system 
signaled an alert on a nonoutbreak day, and a false 
negative result was recorded if no alert was signaled 
on an outbreak day.

Sensitivity was calculated as the number of true 
positives divided by the number of outbreak days (true 
positives plus false negatives). PVP was calculated as 
the number of true positives divided by the total num-
ber of alert days (true positives plus false positives). 
PVN was calculated as the number of true negatives 
divided by the total number of non-alert days (true 
negatives plus false negatives). Specificity—calculated 
as the number of true negatives divided by the total 
number of nonoutbreak days (true negatives plus 
false positives)—was determined for both methods 
by simply applying each method to the baseline data, 
without injecting any signals, and was held constant 
for all simulations.

The performance of each signal detection strategy 
was also assessed in terms of the percentage of overall 
outbreaks detected, viewing each three-day outbreak 
as a single entity. Using this approach, the system was 
considered to have correctly identified an outbreak 

Table 1. Detection of a simulated outbreak: Epidemic Threshold method with and without simulated outbreak

	 	 	 	 	 Epidemic	
Date	 Expecteda	 Observedb	 Injectc	 New	Obsd	 Threshold	 Status

Without simulated outbreak
 1/22/2004 11.55 12 0 12 17.92 Normal
 1/23/2004 11.57 8 0 8 17.93 Normal
 1/24/2004 11.58 9 0 9 17.95 Normal
 1/25/2004 11.60 9 0 9 17.96 Normal
 1/26/2004 11.61 15 0 15 17.97 Normal
 1/27/2004 11.62 15 0 15 17.99 Normal

With simulated outbreak
 1/22/2004 11.55 12 0 12 17.92 Normal
 1/23/2004 11.57 8 0 8 17.93 Normal
 1/24/2004 11.58 9 0 9 17.95 Normal
 1/25/2004 11.60 9 2 11 17.96 Normal
 1/26/2004 11.61 15 4 19 17.97 Normal
 1/27/2004  11.62 15 6 21 17.99  Alert 

aExpected number of coroner’s cases, modeled from 2001–2003 data 
bActual observed number of coroner’s cases, from 2004 surveillance data
cNumber of simulated coroner’s cases
dObserved number of coroner’s cases, including simulated cases
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(a true positive) if an alert was signaled on any of the 
three days of the outbreak.

Because the signal detection capabilities of the 
Cusum method depend upon the accumulation of 
excess events over successive time periods, the com-
parative performance of the two methods was assessed 
using only the percentage-of-overall-outbreaks-detected 
approach. The significance of the difference between 
the percentages of overall outbreaks detected by each 
method at each outbreak magnitude was assessed using 
McNemar’s test for paired proportions. 

RESULTS

The standard deviation of the model’s error profile was 
3.272. Thus, the smallest outbreak magnitude tested 
was six excess cases. This number was increased in 
increments of three to a maximum outbreak size of 
30. So that the shape of the epidemic curve would be 
approximately the same at each magnitude, outbreaks 
were not simply increased in size by one excess case 
per day. Instead, the number of additional cases per 
day was increased by one at every other size increment, 
while still increasing the overall outbreak size by three 
at each increment. This method resulted in outbreak 
progressions of 1-2-3, 2-3-4, 2-4-6, 3-5-7, 3-6-9, 4-7-10, 
and so on, rather than 1-2-3, 2-3-4, 3-4-5, 4-5-6, 5-6-7, 
and so on.

The sensitivities, PVP, and PVN of the two signal 
detection methods, in terms of the number of specific 
outbreak days detected at each outbreak magnitude, 

are shown in Table 3. Analyzing the data without 
artificial signals resulted in the Epidemic Threshold 
method indicating five false positives and the Cusum 
method indicating three false positives. These results 
corresponded to specificities of 0.973 and 0.984, 
respectively.

The comparative percentages of overall outbreaks 
detected by the two methodologies are depicted in 
Figure 2. These results, as well as the significance of 
the difference in the proportions detected by the two 
methodologies, are also presented in Table 4.

DISCUSSION

The purpose of this article, apart from providing a 
description of a coroner-based system for near real-
time community mortality surveillance, is to describe 
and compare the performance characteristics of two 
analytic methods for early event detection in the 
context of that system. More broadly, it is to examine 
the usefulness of controlled feature set simulation for 
evaluating surveillance systems and the analytic meth-
odologies used in them for signal detection.

To be useful, signal detection methods must have 
acceptable operating characteristics. However, deter-
mining these characteristics in real-world data settings 
is difficult due to the limited availability of datasets 
containing bioterrorism attacks or attack-like events 
and for other reasons.18,19 Consequently, while early 
outbreak detection systems have been implemented in 
a variety of locales across the country as a result of fed-

Table 2. Detection of a simulated outbreak: Cusum method with and without simulated outbreak

Date	 Expa	 Obsb	 Injectc	 New	Obsd	 Y	 K	 H	 Y	2	K	 Cusum	 Status

Without simulated outbreak
 1/22/2004 11.55 12 0 12 0.13 1 2 20.87 0 Normal
 1/23/2004 11.57 8 0 8 21.05 1 2 22.05 0 Normal
 1/24/2004 11.58 9 0 9 20.76 1 2 21.76 0 Normal
 1/25/2004 11.60 9 0 9 20.76 1 2 21.76 0 Normal
 1/26/2004 11.61 15 0 15 1.00 1 2 0.00 0 Normal
 1/27/2004 11.62 15 0 15 1.00 1 2 0.00 0 Normal

With simulated outbreak
 1/22/2004 11.55 12 0 12 0.13 1 2 20.87 0 Normal
 1/23/2004 11.57 8 0 8 21.05 1 2 22.05 0 Normal
 1/24/2004 11.58 9 0 9 20.76 1 2 21.76 0 Normal
 1/25/2004 11.60 9 2 11 20.17 1 2 21.17 0 Normal
 1/26/2004 11.61 15 4 19 2.17 1 2 1.17 1.17 Normal
 1/27/2004 11.62 15 6 21 2.75 1 2 1.75 2.92 Alert

aExpected number of coroner’s cases, modeled from 2001–2003 data 
bActual observed number of coroner’s cases, from 2004 surveillance data
cNumber of simulated coroner’s cases
dObserved number of coroner’s cases, including simulated cases
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eral, state, and local initiatives, the number of rigorous 
assessments of their signal detection methods has been 
relatively limited,19,20 especially in terms of comparative 
studies that assess their relative strengths.18 

The CDC has promulgated provisional recom-
mendations for evaluating surveillance systems for 

early outbreak detection, including guidelines for 
assessing the performance of analytical algorithms 
through simulation. The closely related metrics—sen-
sitivity, PVP, and PVN—comprise a useful framework 
for these assessments. However, because acceptable 
levels of precision will likely vary from community to 

Table 3. Sensitivity, PVP, and PVN of signal detection methods

	 Epidemic	Threshold	 	Cusum

	 	 	Outbreak	 	 	 	 	Outbreak	
Outbreak	 	 	days	 	 	 	 	days	
magnitude	 N	 detected		 Sens		 PVP		 PVN	 	detected		 Sens		 PVP		 PVN

 6  732  53  0.072  0.862  0.514  19  0.026  0.731  0.504
 9  732  98 0.134  0.828  0.531  41  0.056  0.854  0.512
  12  732  179 0.245  0.923  0.565  82  0.112  0.921  0.527
  15  732  243 0.332  0.942  0.595  162  0.221  0.959  0.560
  18  732  318 0.434  0.955  0.634  224  0.306  0.970  0.588
  21  732  384 0.525  0.962  0.673  288  0.393  0.976  0.620
  24  732  442 0.604  0.967  0.712  334  0.456  0.979  0.646
  27  732  489 0.668  0.970  0.747  402  0.549  0.990  0.687
  30  732  516  0.705  0.972  0.768  422  0.577  0.984  0.700

Sens 5 sensitivity

PVP 5 predictive value positive

PVP 5 predictive value negative

Figure 2. Percent of outbreaks detected
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 community depending upon the perceived likelihood 
of an outbreak, benefits of early detection, and likely 
costs of investigating false alarms, specific targets for 
these metrics are not given.2

In this study, with specificity held constant, sensitivity, 
PVP, and PVN all increased with increasing outbreak 
magnitude, as would logically be expected. Following 
a generally linear increase, sensitivity ranged from 
single digits for the smallest outbreak to between 50% 
and 70% for the largest outbreak, depending on the 
analytic method. The PVP was high for both methods, 
even for small outbreaks. 

Despite the fall 2001 anthrax attacks, bioterrorism 
is extremely rare in the United States and the likeli-
hood of an attack must still be considered quite small 
in any given community. Surveillance systems designed 
for the early detection of such events, therefore, are 
sometimes justified on the basis of the reassurance 
they can provide that such events have not occurred 
or are not occurring, especially during perceived times 
of increased risk.2 The credibility of such reassurance 
depends upon the validity of the system’s negative 
results, which can be assessed in terms of PVN. In this 
study, PVN percentages ranged from the low 50s for 
the smallest outbreak size tested to the low-to-mid-70s 
for the largest, depending on the analytic method.

A side-by-side comparison based on the percentage 
of outbreaks detected suggested that the Epidemic 
Threshold method performs better than the Cusum 
method, at least under the conditions of this study. 
The Epidemic Threshold method detected significantly 
higher proportions of outbreaks than the Cusum 
method at all but the highest outbreak magnitudes, 

Table 4. Proportion of outbreaks detected

	 Outbreaks	detected

Outbreak	 	 Epidemic		
magnitude	 	N	 Threshold	 	Proportion		 Cusum		 Proportion		 P-valuea

  6  244  49  0.201  15 0.061  ,0.001 

  9  244  83  0.340  30 0.123  ,0.001 

  12  244  145  0.594  66 0.270  ,0.001
  15  244  176  0.721  121  0.496  ,0.001 

  18  244  207  0.848  170  0.697  ,0.001 

  21  244  222  0.910  200  0.820  ,0.00b

 24  244  241  0.988  222  0.910  ,0.00c

 27  244  244  1.000  235  0.963 NAd

  30  244  244  1.000  243  0.996 NAd

aBased on McNemar’s test for paired proportions, using the binomial distribution
bDue to one small expected value, Fisher’s Exact test also used. Fisher’s Exact p,0.001.
cDue to two small expected values, Fisher’s Exact test also used. Fisher’s Exact p50.001.
dNo statistics calculated. One variable (Epidemic Threshold) is constant.

NA 5 not available

with a virtually identical level of specificity. Outbreaks 
could be detected with reasonable reliability (prob-
ability of detection $80%) if they involved at least 18 
excess deaths for the Epidemic Threshold method, or 
21 for the Cusum method.

Limitations
The results of this study are subject to certain limita-
tions that arise from both the data-simulation and 
analysis methodologies. In this study, the epidemic 
curves of the simulated outbreaks were linear and their 
durations quite short. However, there are a number of 
other canonical epidemic curve shapes, and irregular 
epidemic curves are possible as well.7 It is reasonable 
to expect that the outbreak detection methods used 
in this analysis would produce different operating 
characteristics for epidemics with different shapes or 
durations. 

There are a number of statistical algorithms available 
for detecting aberrations in time-series data. Meth-
odologies from the fields of epidemiology, statistical 
process control, signal processing, and data mining 
have been adapted for surveillance and early outbreak 
detection in recent years.21 It is not yet clear, however, 
which method or methods are best suited for early 
event detection in surveillance systems,18 and it is likely 
that certain methods will be better suited to particular 
data settings than others. This article focuses on two 
methods, one epidemiologic and one from statistical 
process control, which are used by the LMHD. Other 
methods could be expected to have different operating 
characteristics when applied to the same data.

Both methods rely upon the use of a baseline mod-
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eled using a limited amount of historic data, from 
2001 through 2003, as these were the only data avail-
able electronically. The use of more data to train the 
Serfling model could have produced a more accurate 
baseline, which could have affected the performance 
characteristics of either or both methods.

The use of coroner data has both advantages and 
disadvantages. On the one hand, these data are usu-
ally available much sooner than vital statistics data 
and often include detailed information on the cir-
cumstances surrounding the deaths, including the 
suspected cause and manner of death. This informa-
tion not only allows for timely surveillance analysis, 
but also makes it possible to conduct the initial steps 
in the follow-up investigations of alerts without having 
to collect additional data. On the other hand, coroner 
and medical examiner databases do not include all 
deaths that occur in a community, and the subsets 
that they do contain are affected by both selection and 
information biases.5 

The analysis of coroner data in near real time pres-
ents potential problems that are not normally encoun-
tered in the retrospective analysis of vital statistics 
data, including data lag issues and the requirement to 
preprocess and quality assure the data. While Jeffer-
son County Coroner’s Office policy requires that data 
from death investigations be entered in the database 
before the end of the shift on which the investigation 
took place, even relatively short delays in data entry 
(e.g., while waiting to receive or confirm certain data) 
can affect surveillance analyses. Also, coroner data 
available for near real-time analysis cannot undergo 
the extensive preprocessing and quality-assurance 
processes that vital statistics data normally do before 
they are officially made available for analysis. Both of 
these issues represent potential sources of error in 
surveillance analyses.

Implicit in the design of this study is the assumption 
that all of the deaths comprising the outbreaks would 
be investigated by the Coroner’s Office and, therefore, 
reported to the surveillance system. In actuality, of 
course, this would not necessarily be the case, as deaths 
not appearing suspicious (e.g., from infectious disease) 
that occur in hospitals 24 hours or more after admis-
sion might not be reported to the Coroner’s Office. It 
is for this reason that the coroner-based surveillance is 
considered useful primarily for surveilling community 
mortality, and other adjuvant systems should be relied 
upon for the surveillance of mortality in health-care 
facilities.

Additionally, while outbreak detection based on 
mortality surveillance alone may be feasible for out-
breaks caused by highly lethal agents that produce 

death quickly (e.g., nerve agents, other chemical or 
biological toxins) or for events normally recognized 
by the occurrence of excess deaths (e.g., heat waves), 
most of the likely bioterrorism agents have incubation 
periods that range from days to weeks, and acute ill-
ness is often preceded by a prodromal period of vary-
ing duration. In such cases, if an outbreak cannot be 
detected unless and until deaths occur, then a critical 
window of opportunity for early intervention will have 
been missed. 

For these reasons, the LMHD uses coroner-based 
mortality surveillance, in conjunction with other forms 
of surveillance, including disease reporting, over-the-
counter pharmaceutical sales, ambulance runs, and 
emergency department-based syndromic surveillance. 
In most cases, therefore, it is expected that the coroner-
based mortality surveillance system would provide cor-
roborating evidence of the existence of an outbreak 
rather than the initial alert.

Of course, extraordinarily large numbers of unex-
plained deaths are likely to arouse suspicion on the part 
of coroners even in the absence of a statistical signal. 
Given that, for both analytic methods, the probability 
of detecting an outbreak is acceptable only for relatively 
large outbreaks ($18 cases over three days) (Table 4), 
this could be seen as calling into question the need 
for such a surveillance system. However, there are a 
number of reasons why, even in the face of limited 
sensitivity, the system remains useful.

First, without a surveillance system even relatively 
large outbreaks could conceivably go unrecognized 
if the circumstances of the deaths were not overtly 
suspicious, given that the outbreak could occur over 
several days and the individual cases distributed among 
two shifts per day and two deputy coroners per shift. 
Without the systematic aggregation and analysis of 
these data—a fundamental task of surveillance—tem-
poral clusters could be overlooked. Second, statistical 
analysis of the data helps avoid false positives as well 
as false negatives, as reliance on coroners’ subjective 
assessments of the occurrence of temporal clusters may 
trigger unnecessary investigations. Third, and perhaps 
most important, the existence of the system represents 
a formal channel of communication between the 
Coroner’s Office and LHMD, which reinforces the 
need for and desirability of interagency information 
sharing.

CONCLUSION

Ultimately, the usefulness of community mortality 
surveillance systems for early outbreak detection must 
be evaluated prospectively and their true operating 
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characteristics determined using long-term studies 
that detect actual events. The high-mortality outbreaks 
such systems are designed to detect, however, are 
low-frequency events. Studies using real-world data, 
therefore, will require many years and much larger 
populations under surveillance to reach reliable con-
clusions. In the interim, controlled feature set simula-
tion appears to be a useful method for describing and 
comparing the performance of the signal detection 
methods used in outbreak surveillance systems when 
real-world event data are lacking. 

Within the context of the coroner-based mortality 
surveillance system used by LMHD, applications of 
both the Cusum and Epidemic Threshold methods 
exhibited low sensitivity for small outbreaks and low to 
moderate sensitivity for larger ones. In terms of overall 
outbreak detection, large outbreaks were detected with 
moderate to high levels of reliability while smaller ones 
were detected with low to moderate reliability for both 
methods. However, in this study, the Epidemic Thresh-
old method performed significantly better than the 
Cusum method for overall outbreak detection.

The use of coroner data for mortality surveillance 
has both advantages and disadvantages. The chief 
advantage is the rapid availability of coroner data 
compared to vital statistics data, making near real-time 
mortality surveillance possible. The sole use of mortality 
surveillance for early outbreak detection has limited 
usefulness, however, and, given the lack of sensitiv-
ity and limited outbreak detection reliability of the 
methods employed in its coroner-based system, LMHD 
continues to use it as an adjuvant in conjunction with 
other surveillance systems. 
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